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Abstract

Air pollution is recognized as a major public health concern. The number of deaths

related to ambient air pollution has increased in recent years and is projected to

continue rising. Additionally, both short- and long-term air pollution exposure has

been linked with deleterious effects on neurocognitive function and development.

While air pollution poses as a threat to everyone, people of color and individuals

of lower socioeconomic status are often exposed to elevated levels of air pollution

as a function of systemic racism and classism. Further, given additional disparities in

access to healthcare and other compounding stressors, adverse effects of air pollution

on neurocognitive health are exacerbated among individuals who hold marginalized

identities—making effects both less likely to be detected and treated. This review

examinesevidenceof theeffects of air pollutiononneurocognitivedevelopment across

the lifespan and incorporates an environmental justice perspective to highlight dispar-

ities in air pollution exposure across race and socioeconomic status. Last, upon the

reviewed evidence, limitations of past research and recommendations for policy are

discussed.
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1 INTRODUCTION

Addressing and mitigating poor air quality has been a long-standing

environmental and public health issue. In the United States, the Clean

Air Act (CAA), the first federal air quality law intended to limit air pol-

lution, was enacted in 1963 (CAA, 1963). Over the past half-century,

the CAA and other environment protection laws have helped to drasti-

cally reduce air pollution nationally. However, after decades of reduced

emissions, theUnited States experienced a 5.7% increase in fine partic-

ulate matter (PM2.5) from 2016 to 2018 (Clay et al., 2021). Increases

of natural gas emissions, nitrate production from motor vehicles, and

wildfires in recent years have negatively impacted ambient air quality

and contributed to these national increases of PM2.5 and other harm-

ful air pollutants. Air pollution has been fully recognized as a significant

public health problem (Kelly & Fussell, 2015), with increased levels of

PM2.5 contributing to an estimated 9700 premature deaths and $89

billion in damages in the United States alone (Clay et al., 2021). Expo-

sure to fine particulate matter has also been associated with adverse

effects on cognitive and brain development, with implications for phys-

ical andmental health outcomes (Bakolis et al., 2021; Genc et al., 2012;

Zhang et al., 2018). Further, there are widespread inequities present

in exposure to air pollution and its resultant effects (Pratt et al., 2015;

Zouet al., 2014). Thepresent reviewoutlines the effects of air pollution

on neurocognition over development, the disproportionate impact of

air pollutiononhistoricallymarginalizedgroups, and recommendations

for policy.

Air pollution represents a combination of diverse components,

including particulatematter (PM), gases, organic compounds, and toxic

metals (Costa et al., 2014; Genc et al., 2012) that can be found in both

outdoor and indoor air. Although there aremany types of air pollutants

inside the Earth’s atmosphere (e.g., elevated levels of ozone, lead, sul-

fur dioxide, nitrogen dioxide, carbon monoxide), this review’s primary
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focus is the impact of PM2.5 and ultrafine particulate matter (UFPM),

given these compounds’ ability toenter the circulatory systemandpen-

etrate organs, including thebrain (Costa et al., 2014;Miller et al., 2021).

Particulate matter is characterized by its size and aerodynamic fea-

tures that affect biological properties (Genc et al., 2012; Oudin, 2020).

Fine particulate matter is classified as <2.5 µm and UFPM as <0.1 µm
(Genc et al., 2012) and is believed to be the most widespread and

threatening air pollutant (Costa et al., 2014; Suades-González et al.,

2015).

Across different research studies, multiplemethods have been used

to estimate exposure to air pollution and its constituent compounds.

Many of the research studies in the present review rely on partic-

ipants’ reported zip code or reported residential address, then use

pollutant measurements from nearby municipal monitoring sites to

provide an estimate of annual exposure. Over time, the models used

to estimate pollution exposure from suchmeasurements have evolved,

incorporating algorithms such as land-use regression that drawon geo-

graphical characteristics of the terrain, climate patterns, and human

land use to improve their predictive ability (Hoek et al., 2008). How-

ever, it has also been noted that these approaches have limitations in

their ability to provide exact measures of personal air pollution expo-

sure, including missing data, missing geographic areas (dependent on

the locationofmonitoring sites), and failing to capture variations in pol-

lutant exposure as a function of where people live versus work/study

(Gray et al., 2013). A more limited number of research studies in the

present review have incorporated direct personal monitoring of air

quality (i.e., at participants’ residential or school sites, or using devices

carried by participants), used participant residential addresses to com-

pare between individuals living relatively close versus far from major

roadways to examine relative pollutant exposure, or used biomarkers

of benzene collected from participant urine samples as a more direct

marker of traffic-related pollution exposure (i.e., Kicinski et al., 2015).

However, these approaches also have practical limitations, especially

in large-scale population studies.

Along with long-documented effects on respiratory and cardiac

function (Brunekreef & Holgate, 2002), recognition that air pollution

adversely affects the brain and nervous systemhas been growing in the

past two decades (Genc et al., 2012). Converging observations across

animal, in vitro, and human studies suggest that the biological mech-

anisms by which air pollution may harm neurocognitive development

include increases in oxidative stress and neuroinflammation (reviewed

in Costa et al., 2014; Costa et al., 2020). Early studies of post-mortem

brain tissue from canines from the Mexico City area (characterized

by high levels of air pollution) relative to control samples from a less-

polluted region suggested that higher air pollution exposure might be

linked to elevated neuroinflammation, DNA damage, and evidence of

neurodegeneration in cortical and glial cells (Calderón-Garcidueñas

et al., 2002, 2003). In vitro studies confirm cytotoxic effects of par-

ticulate matter exposure, resulting in elevated oxidative stress and

inflammation (Block et al., 2004; Xu et al., 2020). Consistent with these

findings in animal and in vitromodels, studies in humans have reported

higher levels of proinflammatory markers in cerebrospinal fluid of the

brain as a function of air pollution exposure (Calderón-Garcidueñas

et al., 2008).

Such changes at the cellular level may serve as mechanisms under-

lying observed adverse effects of air pollution on human health.

Short-term exposure to harmful air is associated with increased risk

of asthma-related emergency room visits (Dominici et al., 2006; Yang

et al., 2019; Zheng et al., 2015), increased inflammation (Dauchet et al.,

2018; Tsai et al., 2019), and short-term cognitive decline (Shehab &

Pope, 2019). Chronic exposure to air pollution is associatedwith higher

incidences of cardiovascular diseases (Brook et al., 2010; Chi et al.,

2016; Rajagopalan et al., 2018; Tonne et al., 2007), respiratory diseases

(Katanoda et al., 2011; Kravitz-Wirtz et al., 2018; Raju et al., 2019),

neurodegenerative disorders (Costa et al., 2017; Oudin, 2020; Power

et al., 2016), and neurodevelopmental delays (Block et al., 2012; Clif-

ford et al., 2016; Costa et al., 2017). Prolonged exposure to ambient air

pollutionhasbeen linked to increased rates of depression (Gładkaet al.,
2018; Kim et al., 2016), aggressive behavior (Burkhardt et al., 2020),

and other mental health challenges (Miller et al., 2019; Tzivian et al.,

2015).

While detrimental effects of air pollution on human health are well

established, its impact has been inequitably distributed, with some

communities affected more than others. Global evidence (including

studies from North American, South American, European, Asian, and

African locations) indicate a link between socioeconomic status (SES)

and exposure to air pollution: specifically, individuals that experience

economic hardship are more likely to reside in areas with elevated lev-

els of air pollution (Evans & Kantrowitz, 2002; Martins et al., 2004;

Hajat et al., 2015; Yang & Liu, 2018; Ofoezie et al., 2022). In the United

States, Americans of color are disproportionately exposed to and nega-

tively impacted by air pollutants relative toWhite Americans (Hadeed

et al., 2021;Wooduff et al., 2003).

Taken together, this manuscript reviews recent evidence of the

impact of air pollution (with a particular focus on PM2.5 and UFPM) on

neurocognitive function and development and related health dispar-

ities. We largely focus on evidence from studies based in the United

States, but also draw on findings from studies conducted globally. We

note that the evidence reviewed generally indicates consistent find-

ings regarding the adverse impact of air pollution across geographic

regions, but that the present review does not systematically compare

for differences in outcomes as a function of location. Additionally,

given variability in the neurocognitive outcomes examined relative to

air pollution exposure across studies in current literature, we review

evidence from studies utilizing a broad range of cognitive, behavioral,

and neural outcomes, including measures of cognitive performance

from multiple domains (such as attention, memory, visual, verbal, and

motor function) as well as related measures such as IQ and academic

performance, sleep and behavioral outcomes (such as hyperactivity),

and measures of brain structure, function, and connectivity. We use

a lifespan perspective, examining adverse effects of air pollution at

ages ranging from gestation to older adulthood, as well as intersecting

influences of poverty and racism associated with disparities in the

adverse effects of air pollution on cognition and neurodevelopment.

 10982302, 2023, 8, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/dev.22440 by U

niversity O
f D

enver, W
iley O

nline L
ibrary on [07/11/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



PHAM AND CHIEW 3 of 13

Finally, on the basis of the reviewed evidence, we will present policy

recommendations to address both the impact of air pollution generally

as well as in terms of racial, ethnic, and socio-economic disparities.

These policy recommendations are primarily framed within the US

context, given that the reviewed evidence is largely US based, as are

themanuscript authors.

2 IMPACT OF AIR POLLUTION ON COGNITION
AND BEHAVIOR OVER THE LIFESPAN

A growing literature provides evidence that air pollution exposure

adversely effects cognitive and behavioral outcomes across a broad

rangeof domains andover the courseof the lifespan. In thepresent sec-

tion, we highlight key findings from this literature, organized chrono-

logically from the prenatal and infant stage through adolescence to

older adulthood.

The early years of life are critical for the development of cognitive

processes, including attention, memory, language, and motor func-

tions, essential to adaptive behavior and daily activities (Johnson &

Munakata, 2005; Kundakovic & Champagne, 2015). An ever-growing

body of research has implicated air pollution as a harmful agent that

disrupts cognitive functioning anddevelopment. There ismounting evi-

dence that adverse cognitiveoutcomesareassociatedwithexposure to

fine particulate matter beginning in the prenatal period. Utilizing data

from 1109 mother–child dyads in Massachusetts, Harris et al. (2015)

found thatprenatal residential proximity tomajor roadways (i.e., higher

exposure to traffic-related air pollutants) measured during the third

trimester predicted lower verbal and nonverbal skills as well as poorer

visuomotor abilities in middle childhood (at ∼8 years of age), control-

ling for demographic and parental factors, neighborhood income, and

predictors of indoor pollution. Furthermore, a systemic review of 126

recent epidemiological studies examining air pollution exposure and

neuropsychological development during infancy and early childhood

identified a significant association between air pollution during gesta-

tion and infant cognitive development (Suades-González et al., 2015).

Specifically, exposure to high levels of PM2.5 during the prenatal period

was linked to delayed global, verbal, and psychomotor development

during infancy.

There is also evidence that prenatal exposure to air pollutants can

adversely affect sleep andbehavioral outcomes during early childhood.

Bose et al. (2019) examined gestational PM2.5 exposure, estimated

from reported residential addresses, and sleep outcomes subsequently

in childhood in a sample of parents and children from Mexico City,

a geographic region characterized by high levels of air pollution

(Calderón-Garcidueñas et al., 2016; Mahady et al., 2020). Bose et al.

(2019) identified a sensitive period at 31–35 weeks of gestation (i.e.,

during the third trimester), during which PM2.5 exposure was signifi-

cantly associated with decreased total hours of sleep later during the

preschool years. The American Association of Sleep Medicine recom-

mends that children between the ages of 3 and 5 years old get 10–13 h

of sleep every day (Paruthi et al., 2016). However, the sample of chil-

dren examined in Bose et al. (2019) averaged 7.8 h of sleep a day, well

below this recommendation, even when controlling for SES, mother’s

body mass index, season, and maternal age. Bose et al. (2019) also

found that prenatal PM2.5 exposure at 1–8 weeks (i.e., during the first

trimester) was associated with lower sleep efficiency (defined as the

percentage of time spent in bed asleep vs. awake) during the children’s

preschool years. The authors linked these poor sleep outcomes to

heightened regional pollution exposure during pregnancy. Importantly,

reduced sleep hours and poor sleep quality during this developmental

stage can lead to challenges in cognitive function,weight problems, and

behavioral maladjustment (Spruyt, 2019).

Exposure to high levels of air pollution during infancy are also asso-

ciated with elevated rates of neurodevelopmental disorders such as

attention deficit/hyperactivity disorder (ADHD) (Aghaei et al., 2019;

Costa et al., 2020; Siddique et al., 2011; Thygesen et al., 2020). A 2016

meta-analysis of the relationship between early life exposure to air

pollution and Autism Spectrum Disorder (ASD) risk provided limited

evidence of toxicity for this association, with the strongest observed

relationship between air pollution and ASD diagnosis for PM2.5 (Lam

et al., 2016). Notably, this meta-analysis included both studies of pre-

natal as well as postnatal exposure, but did not systematically test

for differences in the association between pollution and ASD diag-

nosis as a function of exposure period. Relatedly, longitudinal data

from the Cincinnati Childhood Allergy and Air Pollution Study, which

recruited Cincinnati-area children from families living near (<400 m)

or far (>1500 m) from a major highway or bus route, indicates that

exposure to higher levels of traffic-related air pollution during the first

year of life predicts subsequent rates of hyperactivity, a key behavioral

characteristic of ADHD, at∼7 years of age (Newman et al., 2013).

These studies together provide important evidence that exposure

to air pollution during the prenatal period and early life is associated

with adverse effects on cognitive and behavioral outcomes. However,

given limited research literature investigating this relationship as well

as heterogeneity in analysis approaches, observed results, and stud-

ied periods of exposure over the course of pregnancy, it is currently an

open question whether specific critical periods during pregnancy exist

whereby air pollution exposure presents a greater or lesser threat to

cognitive development (Suades-González et al., 2015). Some studies

of brain development have suggested that air pollution exposure dur-

ing pregnancy might be most impactful on neural outcomes during the

third trimester, as discussed in more detail below (see in The Impact of

Air Pollution on Brain Health Over the Lifespan).

Along with evidence that poor air quality during early development

is associated with adverse cognitive and behavioral outcomes, stud-

ies suggest that improving air quality might improve such outcomes as

well as related metrics such as academic performance. Stafford (2015)

conducted a natural quasi-experiment that included virtually every

elementary school within a Texas school district and reported that

students’ standardized test pass rates improved with mold removal

(∼3–4% increase), renovations to air ventilation (∼2–3% increase),

and roofing replacement (∼3% increase) in the schools. These results

remained significant even after controlling for confounding variables

such as student attendance, school finances, and sociodemographic

characteristics. On the basis of these observations, Stafford (2015)
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posited that renovations to improve schools’ indoor air quality may be

a cost-effective way to improve students’ test scores, relative to other

strategies such as reducing classroom sizes. While PM2.5 concentra-

tions were not directly characterized in this study, Stafford’s results

suggest a relationship between air quality and cognitive/academic per-

formance to be explored further in future work. These findings also

highlight one possible strategy for mitigating the impacts of poor air

quality, an issue we return to later in the paper.

Adolescence is also a critical period for cognitive and behavioral

development (Steinberg, 2005) but the impact of air pollution exposure

on cognitive performance in adolescence has been understudied rela-

tive to its impact earlier in childhood. Kicinski et al. (2015) conducted

an initial study investigating the association between traffic-related

air pollution (characterized using biomarkers of benzene from urine

samples as well as self-reported exposure to traffic) and performance

on a series of neurobehavioral tasks (assessing sustained attention,

short-term memory, and manual motor speed) in an adolescent sam-

ple (N = 606) based in the Netherlands. They reported that increased

traffic-related pollution exposure was associated with decreased sus-

tained attention—specifically, for every one standard deviation (SD)

increase in composite traffic-related air pollution exposure, they

observed a 0.26 SD decrease in sustained attention performance

(approximately one-third of the effect size of maternal education on

attentional performance in this sample). On the other hand, Kusters

et al. 2022() examined associations between prenatal and childhood air

pollution exposure (using estimates based on residential address) and

cognitive and behavioral outcomes (including processing speed, work-

ing memory, fluid reasoning, and IQ measures) in adolescents 13–16

years old (N = 4683) from the Generation R longitudinal study con-

ducted in the Netherlands. For the most part, these relationships were

insignificant (or evenpositive, as observedbetweenexposure to a small

number of pollutant compounds and fluid reasoning as well as ver-

bal IQ; these positive results were interpreted as reflecting negative

residual confounds, selection bias, or chance). While further research

needs to be done to characterize these relationships further, taken

together, current findings indicate that air pollution is associated with

adverse cognitive and behavioral outcomes during infancy and child-

hood in terms of lower verbal and nonverbal skills, visuomotor abilities,

delayed psychomotor development, sleep, and academic performance,

as well as poorer attentional performance in adolescence.

In addition to evidence indicating that ambient air pollution

adversely impacts cognitive functioning in early life, numerous studies

demonstrate that air pollution has negative effects on cognitive perfor-

mance in adulthood as well. In a sample of 1764 American adults aged

20–59 years in the Third National Health and Nutrition Examination

Survey, Chen and Schwartz (2009) observed cross-sectional associa-

tions between greater long-term exposure to air pollution (assessed

using participants’ residential location at the time of study enrollment

and measurements of annual PM10 levels to approximate long-term

exposure to ambient air pollution; note that PM2.5 levels were not

measured in this study) and reduced cognitive performance (measures

of reaction time, visuomotor speed, sustained attention, perceptual

functioning, and short-term memory). La Nauze and Severnini (2021)

provided further cross-sectional evidence for the relation between air

pollution and cognitive functioning: by examining performance on pop-

ular brain-training games as a function of users’ geographic location

(measured by zip code) within the United States, they were able to

characterize the relationship between PM2.5 exposure (estimated by

zip code using monitoring data) and adult cognitive functioning across

seven domains (verbal, attention, flexibility, memory, math, speed,

and problem solving). Their results suggested that increasing levels

of PM2.5 were associated with poorer cognitive performance, with

the strongest deleterious effects observed on memory performance.

Additionally, the inverse relationship between PM2.5 exposure and

cognitive performance was strongest in low-performing individuals,

suggesting that PM2.5 exposuremight compoundwith other influences

to exacerbate inequalities in cognitive performance. Finally, in this

sample, the strongest negative relationshipbetweenair pollutionexpo-

sure and cognitive performancewas observed in young tomiddle-aged

adults (under 50 years). Given that adults in this age range comprise

a large portion of the workforce (Bureau of Labor Statistics, 2022),

this finding implies that air pollution might impact group-level work

performance, withmajor economic implications.

Adverse effects of air pollution on cognitive performance have also

been observed in older adulthood. A recent systematic review iden-

tified multiple studies, both longitudinal and cross-sectional, demon-

strating that elevated exposure to PM2.5 was negatively associated

with verbal learning and working memory abilities in older adults

globally (Clifford et al., 2016). Additionally, by reviewing global epi-

demiological and experimental data, Oudin (2020) identified that

long-term air pollution exposure was associated with elevated risk of

Alzheimer’s disease (AD), vascular dementia, andmild cognitive impair-

ment in older adults. Delgado-Saborit et al. (2021) highlight further

evidence, both longitudinal and cross-sectional, that chronic exposure

to high levels of air pollution was associated with declining global

cognition and visuo-spatial abilities in older adults at an accelerated

rate beyond normative aging; this decline was also associated with

increased risk of developing dementia. Given exponential growth of

older adults as a proportion of theUSpopulation (Vespa, 2018), the link

between air pollution exposure and accelerated age-related cognitive

decline is particularly important from a public health standpoint.

Taken together, this reviewed evidence demonstrates the negative

impact of air pollution on cognitive functioning. These adverse effects

can be observed in a wide range of cognitive domains across the lifes-

pan, with widespread implications for daily behavior, academic and

behavioral outcomes, aswell as rates of cognitive decline and dementia

later in life.

3 THE IMPACT OF AIR POLLUTION ON BRAIN
HEALTH OVER THE LIFESPAN

Along with adverse effects on cognition and behavior, air pollution

exposure has been associated with alterations in the development of

brain structure, function, and connectivity across the lifespan. Orga-

nized similarly to our review of cognitive and behavioral outcomes
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above, the present section reviews evidence regarding the impact of

air pollution on brain health, spanning from the prenatal stage to older

adulthood.

Exposure to PM2.5 during pregnancy, estimated using measure-

ments of pollutant compound concentrations and traffic exposure by

birth county, has been linked to low birthweight (Bell et al., 2010),

which increases risk of neurological disorders, intellectual impairment,

and other developmental challenges (Martinussen et al., 2005). Bell

et al. (2010) further suggested that the relationship between PM2.5

exposure and low birth weight may be more robust for exposure dur-

ing the third trimester. Additionally, Nawrot et al. (2018) reported

that PM2.5 exposure during the third trimester, estimated from mon-

itoring site data using residential address, influenced methylation of

circadian pathway genes in both parent and fetus. Given the critical

role of circadian rhythms (internal processes that regulate the sleep–

wake cycle) in biological, psychological, and social development (Foster,

2020), such disruption can have serious health implications, includ-

ing elevated risk of premature birth (Kajeepeta et al., 2014, Reschke

et al., 2018), adverse experiences at birth (van den Berg et al., 2017),

and neurological disorders (Nawrot et al., 2018). Ambient PM2.5 expo-

sure is also associated with alterations in brain structure and function

during development (Bell et al., 2005; Block et al., 2012; Calderón-

Garcidueñas et al., 2016; Costa et al., 2017). A recent systematic

review (de Prado Bert et al., 2018) of effects of air pollution expo-

sure on the brain over the course of development suggested that

children with greater exposure to PM2.5 displayed reduced white mat-

ter structure throughout the brain, including in the frontal, parietal,

and temporal lobes, which in turn were associated with deficits in

attention, short-term memory, and learning abilities, as well as delete-

rious effects on behavioral and psychomotor development in children.

While not directly measuring for differences in the relative impact of

air pollution on the brain as a function of prenatal period exposure,

de Prado Bert et al. (2018) also suggest that the third trimester of

pregnancy might be particularly critical given that neuron myelination

starts during this period and follows specific spatiotemporal ordering

(Baumann & Pham-Dinh, 2001) that may be disrupted by exposure to

toxins (Maiuolo et al., 2019). However, as when considering cognitive

and behavioral outcomes, additional research is needed to pinpoint

critical periods during pregnancy where brain development and neu-

ral outcomes may be most vulnerable to the impact of air pollution

exposure.

While early life is a critical period for brain development, large-scale

functional networks of the brain continue tomature through childhood

and adolescence; evidence suggests that the impact of air pollution

on neurodevelopment also continues through this period. Pujol et al.

(2016) used functional magnetic resonance imaging to examine effects

of traffic pollution exposure on functional brain connectivity during a

sensory task in a Barcelona-based sample of children aged 8–12 years.

Increased exposure to traffic-related air pollution, measured directly

at children’s school sites during class time for two 1-week periods

separated by 6 months, was associated with reduced integration and

segregation in brain networks supporting both internally and exter-

nally guided cognition (the default mode network and task-related

networks; Fox et al.,2005 ), as well as poorer attention and motor

task performance. Herting et al. (2019) conducted a systematic review

of structural and function MRI studies to evaluate how early-life

exposure to ambient air pollution affects neurodevelopment, and iden-

tified that higher levels of outdoor air pollution were associated

with abnormalities (both decreases and increases) in white matter,

cortical and subcortical gray matter, and brain volume within pre-

adolescent children (under 13 years old). Finally, Miller et al. (2021)

examined longitudinal effects of PM2.5 and early life stress (ELS), as

well as their interaction, on adolescent brain development in a sam-

ple of 115 San Francisco and San Jose Bay Area adolescents. PM2.5

exposure was estimated for each participant using satellite-derived

estimates of PM2.5 concentrations relative to reported residential

address. Miller et al. identified changes in brain volume associated

with both independent and interactive effects of ELS severity and

PM2.5 levels; further, adverse effects of PM2.5 were attenuated in ado-

lescents with histories of more severe ELS. Together, the results of

these studies demonstrate the negative impact of air pollution on brain

development and associated cognitive function during childhood and

adolescence.

In contrast to literature examining effects of air pollution on neu-

rodevelopment in childhood and adolescence, relatively few studies

have examined effects of air pollution on brain health in older adult-

hood. In one such study, Hedges et al. (2019) evaluated the cross-

sectional relation between estimated exposure to atmospheric toxins,

based on reported residential address, and hippocampal volume in a

United Kingdom-based sample of adults between 40 and 69 years. The

studyobserved reduced left hippocampal volumewith increasing expo-

sure to PM2.5; these effects were significant even when controlling for

age, sex, body-mass index, overall health, alcohol use, smoking, educa-

tion attainment, and SES. These findings are particularly alarming given

the vital role of the hippocampus in learning and memory, and obser-

vations of reduced cognitive function in association with hippocampal

volume reductions in cognitive aging, dementia, and neuropsychiatric

diseases (Hedges et al., 2019). Relatedly, Chen et al. (2015) longitudi-

nally examined the adverse effects of ambient PM2.5 (estimated using

residential history and monitoring data) on brain matter in a sam-

ple of 1403 older women (age range: 71–89 years) in the US-based

Women’s Health Initiative Memory Study. Chen et al. observed that in

this sample, greater long-term exposure to PM2.5 predicted significant

reductions in frontal lobe, temporal lobe, and corpus callosum white

matter volume, independent of demographic factors, SES, lifestyle fac-

tors, and geographical region (although notably, in contrast to Hedges

et al. (2019), Chen et al. (2015) did not observe a significant rela-

tionship between PM2.5 exposure and hippocampal volume). Finally,

exposure to particulate matter and environmental nanoparticles has

been identified as a risk factor for the development of neuroinflamma-

tionandneurodegeneration inolder adulthood (Calderón-Garcidueñas

et al., 2016; Costa et al., 2017). In recent years, there has been increas-

ing evidence linking air pollution to diseases of the central nervous

system (CNS), including stroke, AD, Parkinson’s disease, and neurode-

velopmental disorders (Block et al., 2012; Genc et al., 2012). Taken

together, these findings indicate that air pollution has deleterious
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effects on brain health and development at all stages of the lifespan,

with widespread health, economic, and human costs.

4 DISPARITIES IN EXPOSURE TO AND IMPACT
OF AIR POLLUTION

While there is mounting evidence that environmental contaminants

pose a threat to all of us, exposure to low air quality does not affect

everyone to the same extent. In particular, growing evidence indicates

that exposure to air pollution might vary as a function of race and

SES as a result of systemic racism and classism. These differences

in air pollution exposure compound with other group disparities in

health, education systems, and other factors to amplify disparities in

related health outcomes, including those in the neurocognitive domain.

These compounding disparities and the need to address them has

been recognized as a fundamental issue of environmental justice by

the Environmental Protection Agency (EPA) and other federal agen-

cies in the United States (https://www.epa.gov/ej-research). Below, we

review evidence of racial/ethnic and SES-related disparities in air pol-

lution exposure and impact, and advocate for evidence-based policy

changes to reduce both air pollution exposure as well as disparities

in its impact. Given that our policy recommendations below are tar-

geted towards the United States, we primarily focus on evidence of

US-based disparities, although note that studies have suggested that

similar racial/ethnic- and SES-related disparities in air pollution expo-

sure exist globally, including in France (Havard et al., 2009), Ghana

(Rooney et al., 2012), India (Kopas et al., 2020), and China (Yang et al.,

2022) and that calls have been made for more comprehensive studies

of pollution-related health disparities outside theUnited States aswell

as comparatively (Jerrett, 2009).

Decades of research has demonstrated that exposure to air pollu-

tants varies as a function of SES: specifically, lower-SES communities

have often been the target of policies resulting in greater concentra-

tions of air pollution (Ferguson et al., 2020) such as higher exposure to

traffic and industrial emissions (Havard et al., 2009). A study conducted

in North Carolina revealed that neighborhood-level concentration of

fine particulatematter, estimated using air qualitymonitoring data and

numerical output, was significantly associated with three SES-related

factors: median household income, percentage of people living below

the poverty line, and percentage of people with less than a high school

education within the population (Gray et al., 2013). Further, Hajat

et al. (2013) reported that in theMulti-Ethnic Study of Atherosclerosis

(MESA), a large population-based study conducted in several regions

of the United States, increased SES at both the neighborhood- and

individual-level was significantly inversely correlatedwith air pollutant

concentration levels (estimated for each participant’s home address

using a combination of air quality monitoring data, personal sam-

pling, measures of housing quality, and geographic covariates), even

after adjusting for demographic variables and metropolitan area. This

relationship was larger for neighborhood-level SES, although relation-

ships between pollutant levels and both SESmeasureswere significant.

The significant inverse relationship between neighborhood-level SES

and air pollutant levels may be understood as the product of policy

decisions leading to elevated traffic and industrial emissions expo-

sure in lower-SES neighborhoods; the similar relationship observed for

individual-level SES may also reflect such community-level influences

aswell as related factors at the individual level (i.e., housing quality and

direct proximity to roadways; but Hajat et al. also note that the extent

towhich individual- and neighborhood-level SES variables in theMESA

dataset capture shared variance remains unclear given differences in

their data collection).

In addition to the disparities in exposure and adverse effects of

air pollution across SES, people of color are also disproportionately

impacted by air pollution. Nationally, this can be understood as a

legacy of the US’ longstanding history of racist segregation policies,

corresponding disparities in neighborhood development, and broader

structural violence towards racial and ethnic minorities (Namin et al.,

2020; Smith & Stovall, 2008; Woo et al., 2019). Using census block

groupdata fromAmericanurban areas, Ash andFetter (2004) reported

that Black and African American populations are higher in cities with

higher levels of air pollution; and within those cities, Black populations

arehigher in heavily pollutedneighborhoods, as are Latinopopulations.

Using urban census tract data from across the United States, Zou et al.

(2014) provided further evidence that on average, African Americans,

Native Americans and Indigenous people, along with Asian Americans

and Pacific Islanders, are exposed to greater levels of air pollutants

thanWhite Americans.

While there is mounting evidence that SES and systemic

race/ethnicity-based discrimination each predict ambient air pol-

lution exposure independently, effects of economic and racial–ethnic

disparities can also compound. Grineski et al. (2007) uncovered that in

thePhoenixmetropolitan area, neighborhood-level SESwas negatively

associatedwith estimated carbonmonoxide (CO) levels, indicating that

neighborhoods with lower SES had higher levels of CO. Grineski et al.

(2007) also reported that racial/ethnic neighborhood composition

was a significant and positive predictor of exposure to CO pollution:

specifically, neighborhoods with higher proportions of Native Amer-

icans and Latino immigrants had higher levels of CO, independent of

SES. Housing tenure was also a significant predictor of CO exposure:

areas with higher proportion of renters (relative to homeowners) had

higher levels of CO. These results are especially concerning given that

the Phoenix Metropolitan area is the fifth largest metropolitan area

in the United States, one of the fastest growing areas in the country,

and has failed to meet EPA standards for atmospheric pollutants for

decades (Grineski et al., 2007). These findings indicate that while

poor air quality poses a health threat to everyone in a given region,

historically marginalized communities might be particularly exposed

to the harmful effects of air pollution.

In addition to increased exposure to air pollution at the neighbor-

hood level, low-income and historically marginalized communities may

also be exposed to elevated air pollutionwithin the household. Poverty

is strongly related to increased exposure to household air pollutants

including greater use of high-emission fuel sources, such as biomass

and coal, for cooking, heating and lighting (Hadeed et al., 2021).

Additionally, individuals from low-SES and historically marginalized
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communities might spend more time indoors, given reduced access

to recreational spaces and opportunities as well as perceived neigh-

borhood concerns, placing them at greater vulnerability to indoor

pollutants, such as cigarette smoke and household chemicals (Fergu-

son et al., 2020; Woo et al., 2019). Housing in such communities might

also be more poorly ventilated and in poorer condition, contribut-

ing to greater risk of indoor air pollution exposure (Tieskens et al.,

2021).

This increased exposure to air pollution compounds with other

healthdisparities to amplify adversepollution-relatedhealthoutcomes

for vulnerable communities. People from lower SES groups tend to

have worse overall health than individuals of high-SES, which could

make them more susceptible to the damaging effects of air pollution

(Bell et al., 2005). Additionally, people of color and lower-SES indi-

viduals experience elevated levels of psychosocial stress related to

discrimination; this stress exposure has been shown to predict poorer

health outcomes including heightened vulnerability to air pollution’s

adverse effects (Block et al., 2012, Nardone et al., 2018). Multidi-

rectional relationships between increased susceptibility, heightened

exposure to polluted air, financial hardship, and discrimination-based

stress may have cumulative effects on people’s overall physical and

socioemotional well-being. Furthermore, poor people tend to have less

access to health care—and lower quality care—than people of higher

SES, which might make addressing the physical effects of exposure to

air pollution evenmore difficult (Kravitz-Wirtz et al., 2018).

Differences in air pollution exposure may also have contributed to

disparities in wide-ranging outcomes related to the coronavirus dis-

ease 19 (COVID-19) pandemic (Brandt et al., 2020).While the evolving

nature of the pandemic, confounding socioeconomic variables, geo-

graphic differences, and underestimation of case and mortality data

present challenges to quantification of the relationship between air

pollution exposure and COVID-19 outcomes, a recent review indi-

cated a significant positive association between air pollution and

averse COVID-19 health outcomes globally in 91% of papers included

(Bhaskar et al., 2023). A growing literature indicates broader racial

disparities in COVID-19-related outcomes; in the United States, this

has included disparities in case rates (Credit, 2020; Ramprasad et al.,

2022), hospitalization (Ogedegbe et al., 2020; Romano et al., 2021),

mortality (Alcendor, 2020; Parpia et al., 2021), and “long COVID,”

characterized by symptoms persisting for three months or more after

COVID-19 infection (Jacobs et al., 2023). The detrimental effects of

air pollution on health and disparities in these effects may have con-

tributed to disparities in COVID-19 outcomes. It is likewise possible

that disparities in COVID-19 outcomes and related ongoing adverse

health outcomes (including long COVID and elevated risk of other

subsequent adverse health events including stroke and cardiac dis-

ease post-infection; Ahmed et al., 2022; Xie et al., 2022) may position

marginalized communities to be further negatively affected by ongoing

air pollution exposure, but to our knowledge this bidirectional relation-

ship has not been explored in the literature and remains an important

question for future research. Thus, compounding effects of COVID-

19, air pollution, and systemic racism and classism on brain health and

cognitive function have yet to be fully characterized.

The US EPA has recognized that race-, ethnicity-, and income-based

discrimination plays a role in the inequitable distribution of environ-

mental health burden: addressing such disparities has been identified

by the EPA as a major goal and an issue of environmental justice

(USEPA, 2022). Uneven urban development and residential segrega-

tion have pushed people of color into communities with fewer public

goods (Grineski et al., 2007), including green spaces (Nardone et al.,

2021), opportunities for outdoor recreation (Winter et al., 2020), and

pharmacies (Qato et al., 2014), as well as increased industrial and

freeway exposure (Woghiren-Akinnifesi, 2013; Houston et al., 2004).

This is in spite of the fact that people of color have been identified

as consuming fewer goods and services and having a smaller “carbon

footprint” on average, relative to white people (Tessum et al., 2019).

This body of research illustrates the disparities in benefit and burden

existing in the consumption of goods and exposure to air pollutants

across race/ethnicity and SES (Zou et al., 2014), as well as interactions

between race/ethnicity and SES in predicting exposure to harmful air

pollutants (Ash & Fetter, 2004; Brochu et al., 2011).

Although environmental justice and equity issues have garnered

the interest of researchers, policy holders, advocacy groups, and the

general public, very few studies have assessed the cumulative risks of

holding historically marginalized identities (i.e., racial–ethnic minori-

ties in the United States and/or being of low-SES) in addition to

heightened exposure to ambient air pollutants on human health (Smith

& Laribi, 2022). One recent study (Schulz et al., 2020) examined

the joint effects of race-based residential segregation, neighborhood

socioeconomic factors, and environmental pollutant exposure (esti-

mated using air quality monitoring and modeling data) in the Detroit

Metropolitan Area and reported that race-based residential segre-

gation was associated with increased rates of all-cause mortality (all

deaths that occurredwithin a population, regardless of the cause). This

effect was mediated by education attainment level, income inequality

across the area, and exposure to PM2.5. Additionally, there were signif-

icant associations between each individual pathway and the all-cause

mortality rate, indicating that each factor canpartially explain regional-

level all-cause mortality rates. Despite these indicators that historic

marginalization, SES, and pollution exposure interact with one another

to predict all-cause mortality, their cumulative risk on other specific

health consequences, such as neurocognitive outcomes, remains to

be fully examined. A recent pilot study (Medrano et al., 2022) pro-

vides an important step in this direction by investigating cognitive

performance as a function of real-timemeasured personal exposure to

PM2.5 (measured using personal monitoring devices carried by partic-

ipants for a 3-day period) and zip code-aggregated social vulnerability

indices, and reported initial evidence that higher real-time PM2.5 expo-

sure was negatively associated with cognitive performance as well as

with socioeconomic metrics (higher parental education and income).

Medrano et al.’s study was limited by use of a relatively small conve-

nience sample (N = 30 families with a child between the ages of 7 and

11 years old) and a constrained timeline; additional studies with larger,

more diverse samples measured over longer periods of time will be

beneficial in disentangling the cumulative impacts of air pollution and

social vulnerability on neurocognitive outcomes.
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5 RECOMMENDATIONS FOR POLICY

The evidence reviewed here indicates that air pollution has major and

adverse effects on neurocognitive development. Further, there are

disparities in these effects, with some communities impacted more

than others. A number of potential actions will help to address these

issues. First, as noted by Clay et al. (2021), ambient air pollution has

increased since 2016 and this might be largely due to increased vehi-

cle emissions. One strategy to address this increasemight be to expand

electric vehicle rebate programs, encouraging purchase and use of

lower-emission vehicles. Additionally, increased investment into pub-

lic transit infrastructure might increase its usage, thus decreasing air

pollution by lowering vehicle emissions output. Investment in sustain-

able energy sources more broadly will also reduce air pollution by

promoting transition away from use of high-emission fossil fuels.

In addition to these strategies to reduce emissions output generally,

recommendations have also been put forward to specifically address

the problem of inequity in pollution exposure and related health

outcomes.Whilemany previous environmental interventions have dis-

proportionately benefited high-income communities, The Union of

Concerned Scientists, a nonprofit advocacy organization, has recom-

mended prioritizing investments in electric transit and school buses

serving communities of color and lower income to decrease emis-

sions exposure in these communities, decreasing racial and income

disparities in pollution impact (Pinto de Moura, 2019). Additionally,

while electric vehicle rebate programs could encourage purchase

of lower-emission vehicles generally, such programs could prioritize

low- to moderate-income individuals in particular, helping to mitigate

disparities in pollution impact as well.

Furthermore, given that green space is lacking in marginalized com-

munities and improves air quality (Jennings et al., 2015; Wen et al.,

2013), prioritizing the development of green spaces in such communi-

ties could also help reduce disparities in pollution exposure and related

health outcomes. Increases in green space also offermany other health

benefits for communities: along with reducing air pollution, green

space also decreases noise and heat pollution (Andersson et al., 2015;

Douglas et al., 2017), promotes stress recovery and positive mental

health outcomes (Bratman et al., 2019; Nutsford & Pearson, 2013),

and is negatively associated with neighborhood-level crime (Bogar &

Beyer, 2016; McCabe, 2014). In addition to these recommendations

to reduce disparities in exposure to and the impact of air pollution

specifically, these considerations can be considered part of the larger

need to address structural disparities disadvantaging marginalized

communities (Rigolon et al., 2021).

In addition to strategies improving outdoor air quality, steps to

improve indoor air quality are important as well. As demonstrated by

Stafford (2015), ventilation systems renovations improving indoor air

quality in schools have been associated with significant improvements

in students’ cognitive, behavioral, and academic outcomes. Removal of

harmful indoor contaminants (e.g., mold, asbestos), renovating air ven-

tilation systems, and updating roofing and wall panels are all proven

cost-efficient ways to reduce indoor air pollution and improve air

quality. In addition to support for such improvements in older buildings,

regulatory standards for indoor air quality should be developed and

enforced. Current air quality regulations generally do not go beyond

addressing outdoor air conditions, despite indoor air pollution posing a

serious threat to public health (Roselund, 2020).

Finally, government agencies should both aim to better enforce cur-

rent regulations anddevelop future environmental policies.Many large

sources of air pollutants, such as factories and coal mines, are not

properly regulated and penalized for failing to meet federal air quality

standards (Payne-Sturges et al., 2019). Additionally, state governments

and individual organizations need to be held accountable for failing

to provide and regulate safe air for their residents (Melnick, 2010;

Jacob & Winner, 2009). The 2022 Supreme Court decision curtailing

EPA authority to reduce greenhouse gas emissions from power plants

(Huang, 2022) is a concerning step in the wrong direction regarding

such regulatory authority.

6 CONCLUSION

Air pollution has been fully recognized as a public health concern.

Scientists have established a clear link between air pollution and nega-

tive health outcomes. As reviewed in the present manuscript, prenatal

exposure to fine particulate matter can impact fetal programming

and early development, while air pollution exposure during infancy

and childhood is associated with poorer outcomes in a wide range of

neurocognitive measures. Air pollution also adversely affects health

outcomes in adulthood, including elevated rates of AD, dementia, and

cognitive impairment in older adults.

Further, environmental justice advocates and environmental

inequity researchers have brought to light the disproportionate expo-

sure and harmful effects of air pollution amongst people of color and

low SES. Despite historically contributing the least to environmental

pollutants, people of color and low-income individuals are experienc-

ing the most damaging and lasting effects of air pollution and climate

change more broadly. We all deserve the right to clean air and we

should all be invested in climate change policy. Given the economic and

human costs of air contaminants, it is imperative that local and federal

legislators prioritize recommendations such as those we have outlined

here to ensure that every person has access to clean and safe air.
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